ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से $9$ अधिक हो तथा दूसरा पद चौथे पद से $18$ अधिक हो।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let a be the first term and r be the common ratio of the $G.P.$

$a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}$

By the given condition,

$a_{3}=a_{1}+9 \Rightarrow a r^{2}=a+9$          ..........$(1)$

$a_{4}=a_{4}+18 \Rightarrow a r=a r^{3}+18$         ..........$(2)$

From $(1)$ and $(2),$ we obtain

$a\left(r^{2}-1\right)=9 $        ..........$(3)$

$a r\left(1-r^{2}\right)=18$          ...........$(4)$

Dividing $(4)$ by $(3),$ we obtain

$\frac{\operatorname{ar}\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}$

$\Rightarrow-r=2$

$\Rightarrow r=-2$

Substituting the value of $r$ in $(1),$ we obtain

$4 a=a+9$

$\Rightarrow 3 a=9$

$\therefore a=3$

Thus, the first four numbers of the $G.P.$ are $3,3(-2), 3(-2)^{2},$ and $3(-2)^{3}$

i.e., $3,-6,12$ and $-24$

Similar Questions

यदि ${\log _x}a,\;{a^{x/2}}$ व ${\log _b}x$ गुणोत्तर श्रेणी में हों, तब $x =$

यदि $64$ पदों की एक $G.P.$ में सभी पदों का योग, इसके विषम पदों के योग का $7$ गुना है, तो $G.P.$ का सार्व अनुपात बराबर है :

  • [JEE MAIN 2024]

श्रेणी $3 + 4\frac{1}{2} + 6\frac{3}{4} + ......$ के पाँच पदों का योग होगा

अनुक्रम $8,88,888,8888 \ldots$ के $n$ पदों का योग ज्ञात कीजिए

यदि किसी अनन्त गुणोत्तर श्रेणी के पदों का योग व इसके पदों के वर्गो का योग $3$ हो, तो प्रथम श्रेणी का सार्व-अनुपात है