किसी वृत्त पर स्थित बिन्दु $P$ तथा $Q$ पर स्पर्शज्या, बिन्दु $R$ पर मिलती है। यदि $P Q=6$ तथा $P R=5$ तब वृत्त की त्रिज्या होगी
$\frac{13}{3}$
$4$
$\frac{15}{4}$
$\frac{16}{5}$
एक बिंदु $P$ से वत्त $x ^{2}+ y ^{2}-2 x -4 y +4=0$ पर दो स्पर्श रेखाएँ खींची गई हैं। इन स्पर्श रेखाओं के बीच का कोण $\tan ^{-1}\left(\frac{12}{5}\right)$ है, जहाँ $\tan ^{-1}\left(\frac{12}{5}\right) \in$ $(0, \pi)$ है। यदि वत्त का केन्द्र $C$ है तथा ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती है, तो $\triangle PAB$ तथा $\triangle CAB$ के क्षेत्रफलों का अनुपात है
वृत्त ${x^2} + {y^2} - 2x + 4y + 1 = 0$ पर बिन्दु $A(0,\,1)$ से खींची गयीं स्पर्शियाँ $AB$ व $AC$ हैं, तो बिन्दुओं $A, B$ व $C$ से जाने वाले वृत्त का समीकरण है
वृत्त ${x^2} + {y^2} = 169$ के बिन्दुओं $(5, 12)$ तथा $(12, -5)$ पर स्पर्श रेखाओं के बीच का कोण ............. $^o$ है
वृत्त ${x^2} + {y^2} + 2gx + 2fy + {c_1} = 0$ के किसी बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी
वृत्त ${x^2} + {y^2} = 5$ के बिन्दु $(1,-2) $ पर स्पर्श रेखा वृत्त ${x^2} + {y^2} - 8x + 6y + 20 = 0$ को