माना वक्र $9 x^2+16 y^2=144$ की एक स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर मिलती है। तो रेखाखंड $\mathrm{AB}$ की न्यूनतम लंबाई_______________.
$5$
$6$
$7$
$8$
उस दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ और शीर्ष $(4, 0)$ तथा $(10, 0)$ हैं, होगा
दीर्घवृत्त $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है
माना $S =\left\{( x , y ) \in N \times N : 9( x -3)^2+16( y -4)^2 \leq 144\right\}$
तथा $T =\left\{( x , y ) \in R \times R :( x -7)^2+( y -4)^2 \leq 36\right\}$हैं। तो $n ( S \cap T )$ बराबर $............$ है।
यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$ हो, तो उसका नाभिलम्ब होगा
अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो बिन्दु $P(a\sec \theta ,\;b\tan \theta )$ और $Q(a\sec \phi ,\;b\tan \phi )$ हैं, जहाँ $\theta + \phi = \frac{\pi }{2}$ है। यदि $P$ और $Q$ पर अभिलम्ब एक दूसरे को बिन्दु $(h, k)$ पर काटते हैं, तो $k$ का मान है