Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes
$1$
$x$
$\frac{x^2+(a+b+c)(a b+b c+c a)}{(a-b)(b-c)(c-a)}$
$0$
The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are
If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval
If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by
The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are