The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by

  • A

    $\frac{3}{2} \le x \le 3$

  • B

    $ - 3 \le x \le \frac{3}{2}$

  • C

    $ - 3 \le x \le 3$

  • D

    $\frac{3}{2} \le x \le 2$

Similar Questions

If $a$ and $b$ are the roots of equation $x^2-7 x-1=0$, then the value of $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ is equal to $........$.

  • [JEE MAIN 2023]

The sum of the solutions of the equation $\left| {\sqrt x  - 2} \right| + \sqrt x \left( {\sqrt x  - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to

  • [JEE MAIN 2019]

The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is

  • [KVPY 2019]

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]

If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation