The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are

  • [IIT 1988]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

The condition that ${x^3} - 3px + 2q$ may be divisible by a factor of the form ${x^2} + 2ax + {a^2}$ is

If $x$ is real, then the value of $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ does not lie between

If $\alpha, \beta$ are roots of the equation $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ and $P_{n}=\alpha^{n}-\beta^{n}$ for each positive integer $\mathrm{n}$, then the value of $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ is equal to $....$

  • [JEE MAIN 2021]

Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]