If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval
$\left( {\frac{1}{{13}},\frac{1}{3}} \right)$
$\left[ { - \frac{1}{{13}},\frac{1}{3}} \right]$
$\left( { - \frac{1}{3},\frac{1}{{13}}} \right)$
None of these
Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.
$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.
($1$) $a_{12}=$
$[A]$ $a_{11}-a_{10}$ $[B]$ $a_{11}+a_{10}$ $[C]$ $2 a_{11}+a_{10}$ $[D]$ $a_{11}+2 a_{10}$
($2$) If $a_4=28$, then $p+2 q=$
$[A] 21$ $[B] 14$ $[C] 7$ $[D] 12$
answer the quetion ($1$) and ($2$)
The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is
The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:
If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is
Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is