If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval

  • [IIT 1969]
  • A

    $\left( {\frac{1}{{13}},\frac{1}{3}} \right)$

  • B

    $\left[ { - \frac{1}{{13}},\frac{1}{3}} \right]$

  • C

    $\left( { - \frac{1}{3},\frac{1}{{13}}} \right)$

  • D

    None of these

Similar Questions

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.

$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

($1$) $a_{12}=$

$[A]$ $a_{11}-a_{10}$  $[B]$ $a_{11}+a_{10}$  $[C]$ $2 a_{11}+a_{10}$   $[D]$ $a_{11}+2 a_{10}$

($2$) If $a_4=28$, then $p+2 q=$

$[A] 21$   $[B] 14$   $[C] 7$    $[D] 12$

 answer the quetion ($1$) and ($2$)

  • [IIT 2017]

The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is

The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:

  • [JEE MAIN 2023]

If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is

Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:

$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is

  • [KVPY 2015]