State whether the following are true or false. Justify your answer.
$\cot$ $A$ is not defined for $A =0^{\circ}$
$\cot \,A$ is not defined for $A =0^{\circ}$
As $\cot A=\frac{\cos A}{\sin A}$
$\cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}=$ undefined
Hence, the given statement is true.
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
Evaluate:
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$