Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$
In $\Delta ACB ,$ we have
$AC=\sqrt{ AB ^{2}- BC ^{2}}=\sqrt{(29)^{2}-(21)^{2}}$
$=\sqrt{(29-21)(29+21)}=\sqrt{(8)(50)}=\sqrt{400}=20$ units
So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}, \cos \theta=\frac{B C}{A B}=\frac{21}{29}$
Now,
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{20}{29}\right)^{2}+\left(\frac{21}{29}\right)^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1$
and
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}=\frac{(21+20)(21-20)}{29^{2}}=\frac{41}{841}$
In $Fig.$ find $\tan P-\cot R .$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
$(\sec A+\tan A)(1-\sin A)=..........$