In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given $PQ =3\,cm$ and $PR =6 \,cm$

$\frac{ PQ }{ PR }=\sin R$

$\sin R =\frac{3}{6}=\frac{1}{2}$

$\angle PRQ =30^{\circ}$

$\angle QPR =60^{\circ}$

Similar Questions

Evaluate the following:

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

Prove that $\sec A(1-\sin A)(\sec A+\tan A)=1$