समीकरण  $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ के हल हैं

  • A

    $x = 1,\,2$

  • B

    $x = 2,\,3$

  • C

    $x = 1,\,p,\,2$

  • D

    $x = 1,\,2,\, - p$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $

किसी $\Delta ABC$ में, यदि $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, तो ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

यदि $\alpha ,\beta \ne 0$ तथा $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ तथा

$\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\;$

$= K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ है, तो $K$ बराबर है

  • [JEE MAIN 2014]

निकाय $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ के अनन्त हलों के लिये  $ k$  के मानों की संख्या होगी

  • [IIT 2002]

यदि $\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, तो $ x$ का मान होगा