Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We use the Identity $(iv)$ given earlier. Multiply and divide $\frac{1}{2+\sqrt{3}}$ by
$2-\sqrt{3}$ to get $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$.

Similar Questions

Visualise $3.765$ on the number line, using successive magnification.

Express $0.99999 \ldots$ in the form $\frac{p}{q}$. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.

Find : 

$(i)$ $64^{\frac{1}{2}}$

$(ii)$ $32^{\frac{1}{5}}$

$(iii) $ $125^{\frac{1}{3}}$

Show that $3.142678$ is a rational number. In other words, express $3.142678$ in the form $\frac {p }{q }$, where $p$ and $q$ are integers and $q \ne 0$.

Find :

$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$

$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$

$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$