Show that $0.2353535 \ldots=0.2 \overline{35}$ can be expressed in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $x=0.2 \overline{35}$. Over here, note that $2$ does not repeat, but the block $35$ repeats. since two digits are repeating, we multiply $x$ by $100$ to get

                         $100 x=23.53535 \ldots$

So,                   $100 x=23.3+0.23535 \ldots=23.3+x$

Therefore,          $99 x=23.3$

i.e.,                  $99 x=\frac{233}{10},$ which gives $x=\frac{233}{990}$

You can also check the reverse that $\frac{233}{990}=0.2 \overline{35}$.

Similar Questions

Find :

$(i)$ $9^{\frac{3}{2}}$

$(ii)$ $32^{\frac{2}{5}}$

$(iii)$ $16^{\frac{3}{4}}$

$(iv)$ $125^{\frac{-1}{3}}$

Find the decimal expansions of $\frac{10}{3},\, \frac{7}{8}$ and $\frac{1}{7}$.

Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0),$ where $p$ and $q$ are integers with no common factors other than $1$ and having terminating decimal representations (expansions). Can you guess what property $q$ must satisfy ?

Classify the following numbers as rational or irrational :

$(i)$ $2-\sqrt{5}$

$(ii)$ $(3+\sqrt{23})-\sqrt{23}$

$(iii)$ $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

$(iv)$ $\frac{1}{\sqrt{2}}$

$(v)$ $2 \pi$

Simplify

$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}$

$(ii)$ $\left(3^{\frac{1}{5}}\right)^{4}$

$(iii)$ $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$

$(iv)$ $13^{\frac{1}{5}} \cdot 17^{\frac{1}{5}}$