Simplify the following:
$3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}$
$3 \sqrt{3}+2 \sqrt{27}+\frac{1}{\sqrt{3}}$
$=3 \sqrt{3}+2 \times 3 \sqrt{3}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+6 \sqrt{3}+\frac{7}{\sqrt{3}}$
$=3 \sqrt{3}+6 \sqrt{3}+\frac{7 \sqrt{3}}{3}$
$=\sqrt{3}\left(3+6+\frac{7}{3}\right)$
$=\sqrt{3}\left(9+\frac{7}{3}\right)$
$=\sqrt{3} \times \frac{34}{3}$
$=\frac{34}{3} \sqrt{3}$
Which type of number is number $\frac{22}{7}$ $-$ rational or irrational $?$
$\sqrt[4]{\sqrt[3]{2^{2}}}$ equals
Value of $\sqrt[4]{(81)^{-2}}$ is
If $a=\frac{3+\sqrt{5}}{2},$ then find the value of $a^{2}+\frac{1}{a^{2}}$.
Represent geometrically numbers on the number line:
$\sqrt{2.3}$