Show that the ratio of the sum of first $n$ terms of a $G.P.$ to the sum of terms from
$(n+1)^{ th }$ to $(2 n)^{ th }$ term is $\frac{1}{r^{n}}$
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
Sum of first $n$ terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are $n$ terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term,
Sum of terms from $(n+1)^{t h}$ to $(2 n)^{th}$ term
$S_{n}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first $n$ terms of a $G.P.$ to the sum of terms from term is $\frac{1}{r^{n}}$
If the first term of a $G.P.$ ${a_1},\;{a_2},\;{a_3},..........$ is unity such that $4{a_2} + 5{a_3}$ is least, then the common ratio of $G.P.$ is
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then
The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$
Let $b_1, b_2,......, b_n$ be a geometric sequence such that $b_1 + b_2 = 1$ and $\sum\limits_{k = 1}^\infty {{b_k} = 2} $ Given that $b_2 < 0$ , then the value of $b_1$ is