सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ न तो एकैकी है और न आच्छादक है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(-1)=1=f(1), \,f$ is not oneone. Also, the element $-2$ in the co-domain $R$ is not image of any element $x$ in the domain $R$ (Why ?). Therefore $f$ is not onto.

864-s40

Similar Questions

माना : $A =\{0,1,2,3,4,5,6,7\}$ एक समुच्चय है। तो फलनों $f: A \rightarrow A$, जो आच्छादक तथा एकैकी दोनों है तथा $f(1)+f(2)=3-f(3)$ को संतुष्ट करते है, की संख्या बराबर है ........... |

  • [JEE MAIN 2021]

सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: R_* , \rightarrow R_*$, एकैकी तथा आच्छादक है, जहाँ $R_*$, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $R_*$, को $N$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $R_*$ही रहे, तो भी क्या यह परिणाम सत्य होगा?

समुच्चय $A$ में $3$ तथा $B$ में $4$ अवयव हैं, तब $A$ से $B$ में बनने वाले एकैकी प्रतिचित्रणों की संख्या होगी

माना फलन $f : R \rightarrow R$ इस प्रकार है कि $f ( x )= x ^{3}+ x ^{2} f ^{\prime}(1)+ xf ^{\prime \prime}(2)+ f ^{\prime \prime \prime}(3), x \in R$ तो $f(2)$ बराबर है

  • [JEE MAIN 2019]

सभी वास्तविक $x \neq 3$ के लिए फलन $f(x)=\frac{16 x^2-96 x+153}{x-3}$ को परिभाषित करें । $f(x)$ का सबसे छोटा धनात्मक मान है ?

  • [KVPY 2017]