સાબિત કરો કે $f: R \rightarrow R$, $f(x)=x^{2},$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(-1)=1=f(1), \,f$ is not oneone. Also, the element $-2$ in the co-domain $R$ is not image of any element $x$ in the domain $R$ (Why ?). Therefore $f$ is not onto.

864-s40

Similar Questions

ધારો કે $f:[2,\;2] \to R$ ; $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, તો $\{ x \in ( - 2,\;2):x \le 0$ અને $f(|x|) = x\} = $

વિધેય $f(x) = \cos (x/3)$ નો વિસ્તાર મેળવો.

જો $A=\{a, b, c\}$ અને $B=\{1,2,3,4\}$ હોય તો ગણ $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ અને $f$ એ એક એક વિધેય નથી.$\}$ માં કેટલા ઘટકો આવેલા છે 

  • [JEE MAIN 2020]

જો વિધેય $f(x){ = ^{9 - x}}{C_{x - 1}}$ ના પ્રદેશગણ અને વિસ્તારગણમા અનુક્ર્મે $m$ અને $n$ સભ્યો હોય તો 

જો $x$ એ શૂન્યતર સંમેય સંખ્યા છે અને $y$ એ અસંમેય સંખ્યા છે , તો $xy$ મેળવો.