સાબિત કરો કે બિંદુઓ $A(a, b+c), B(b, c+a), C(c, a+b)$ સમરેખ છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Area of $\triangle \mathrm{ABC}$ is given by the relation,

$\Delta=\frac{1}{2}\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right|$

$=\frac{1}{2}\left|\begin{array}{ccc}a & b+c & 1 \\ b-a & a-b & 0 \\ c-a & a-c & 0\end{array}\right|$ 

( Applying $ R_{2} \rightarrow R_{2}-R_{1}$ and  $R_{3} \rightarrow R_{3}-R_{1}$)

$=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|$

$=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}a & b+c & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right| \quad\left(\text { Applying } R_{3} \rightarrow R_{3}+R_{2}\right)$

$=0 \quad$ (All elements of $R_{3}$ are $0$ )

Thus, the area of the triangle formed by points $A, B$ and $C$ is zero.

Hence, the points $A, B$ and $C$ are collinear.

Similar Questions

સમીકરણની સંહતિ $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ નો ઉકેલ ખાલીગણ હોય તો $\alpha $ કિમત મેળવો.

  • [AIEEE 2005]

સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?

  • [JEE MAIN 2024]

નિશ્ચાયકની કિમત મેળવો  : $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$

$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
  x&1&1 \\ 
  1&y&1 \\ 
  1&1&z 
\end{array}} \right|$ ની કિમંત અનૃણ મળે.

  • [JEE MAIN 2015]

જો $A, B, C$ એ ત્રિકોણના ખૂણા હોય તો નિશ્ચાયક $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ ની કિમંત મેળવો.