નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$
By expanding along the first row, we have:
$|A|=0\left|\begin{array}{ll}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{ll}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{ll}-1 & 0 \\ -2 & 3\end{array}\right|$
$=0-1(0-6)+2(-3-0)$
$=-1(-6)+2(-3)$
$=6-6=0$
જો $m$ અને $M$ એ $\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$. ની અનુક્રમે ન્યૂનતમ અને મહત્તમ કિમત દર્શાવતા હોય તો $( m , M )$ ની કિમત શોધો
નિશ્ચાયકનો ઉપયોગ કરી $\mathrm{A}(1, 3)$ અને $\mathrm{B}(0, 0)$ ને જોડતી રેખાનું સમીકરણ શોધો અને જો ત્રિકોણ $\mathrm{ABD}$ નું ક્ષેત્રફળ $3$ ચોરસ એકમ થાય તેવું બિંદુ $\mathrm{D}(\mathrm{k}, 0)$ હોય, તો $\mathrm{k}$ શોધો.
નીચે આપેલાં શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ શોધો : $(-2,-3),(3,2),(-1,-8)$
જો ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , હોય તો $\left| {\begin{array}{*{20}{c}}
{{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\
1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\
{{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}}
\end{array}} \right|$ ની કિમત મેળવો.
જો $[.]$ , $ \{.\} $ અને $sgn$$(.)$ અનુક્રમે મહતમ પૃણાંક , પૃણાંક વિધેય, અને ચિન્હ વિધેય છે તો
$\left| {\begin{array}{*{20}{c}}
{\left[ \pi \right]}&{amp(1 + i\sqrt 3 )}&1 \\
1&0&2 \\
{\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} }
\end{array}} \right|$ ની કિમંત મેળવો.