If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $
$0$
$25$
$625$
$- 700000$
If the sum of squares of all real values of $\alpha$, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is $p$, then the greatest integer less than or equal to $\mathrm{p}$ is $.........$
Consider the system of linear equation $x+y+z=$ $4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$, where $\lambda, \mu \in R$. Which one of the following statements is $NOT$ correct?
Statement $-1$ : The system of linear equations
$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$
$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$
$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$
has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Statement $-2$ : The equation in $\alpha $
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$
Evaluate $\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$