Show that if $A \subset B,$ then $(C-B) \subset( C-A)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A \subset B$

To show: $C-B \subset C-A$

Let $x \in C-B$

$\Rightarrow x \in C$ and $x \notin B$

$\Rightarrow x \in C$ and $x \notin A[A \subset B]$

$\Rightarrow x \in C-A$

$\therefore C-B \subset C-A$

Similar Questions

$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is 

If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cap(A \cup B)=A$

Sets $A$ and $B$ have $3$ and $6$ elements respectively. What can be the minimum number of elements in $A \cup B$