Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cap(A \cup B)=A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To show: $A \cap(A \cup B)=A$

$A \cap(A \cup B)=(A \cap A) \cup(A \cap B)$

$=A \cup(A \cap B)$

$=A\{\text { from }(1)\}$

Similar Questions

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$D-A$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$B \cap D$

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$

 

Let $A = \{ (x,\,y):y = {e^x},\,x \in R\} $, $B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ Then

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$A \cup B$