Find :
$(i)$ $9^{\frac{3}{2}}$
$(ii)$ $32^{\frac{2}{5}}$
$(iii)$ $16^{\frac{3}{4}}$
$(iv)$ $125^{\frac{-1}{3}}$
$(i)$ $9^{\frac{3}{2}}=\left(3^{2}\right)^{\frac{3}{2}}=3^{2 \times \frac{3}{2}}=3^{3}=27$
$(ii)$ $32^{\frac{2}{5}}=\left(2^{5}\right)^{\frac{2}{5}}=2^{5 \times \frac{2}{5}}=2^{2}=4$
$(iii)$ $16^{\frac{3}{4}}=\left(2^{4}\right)^{\frac{3}{4}}=2^{4 \times \frac{3}{4}}=2^{3}=8$
$(iv)$ $(125)^{-\frac{1}{3}}=\left(5^{3}\right)^{-\frac{1}{3}}=5^{3 \times\left(-\frac{1}{3}\right)}=5^{-1}=\frac{1}{5}$
Rationalise the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.
Write the following in decimal form and say what kind of decimal expansion each has :
$(i)$ $\frac{36}{100}$
$(ii)$ $\frac{1}{11}$
$(iii)$ $4 \frac{1}{8}$
$(iv)$ $\frac{3}{13}$
$(v)$ $\frac{2}{11}$
$(vi)$ $\frac{329}{400}$
Multiply $6 \sqrt{5}$ by $2 \sqrt{5}$.
Express $0.99999 \ldots$ in the form $\frac{p}{q}$. Are you surprised by your answer ? With your teacher and classmates discuss why the answer makes sense.
Visualise $3.765$ on the number line, using successive magnification.