સાબિત કરો કે જો $A \cup B=A \cap B$ હોય, તો $A=B$.
Let $a \in A.$ Then $a \in A \cup$ $B$. Since $A \cup B=A \cap B, a \in A \cap B$.
So $a \in B$
Therefore, $A \subset$ $B.$ Similarly, if $b \in B$, then $b \in A \cup$ $B.$
Since $A \cup B=A \cap B, b \in A \cap B .$ So, $b \in A .$
Therefore, $B \subset A .$ Thus, $A=B$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-D$
જો $A, B$ અને $C$ એ ત્રણ ગણ હોય તો $A -(B \cup C)$ મેળવો.
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
છેદગણ શોધો : $A=\{1,2,3\}, B=\varnothing$
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે ? $ P(A) \cup P(B)=P(A \cup B)$ સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.