કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
Let $X \in P\left( {A \cap B} \right).$ Then $X \subset A \cap B.$ So, $X \subset A$ and $X \subset B.$ Therefore, $X \in P\left( A \right)$ and $X \in P\left( B \right)$ which implies $X \in P\left( A \right) \cap P\left( B \right).$ This given $P\left( {A \cap B} \right) \subset P\left( A \right) \cap P\left( B \right).$ Let $Y \in P\left( A \right) \cap P\left( B \right).$ Then $Y \in P\left( A \right)$ and $Y \in P\left( B \right).$ So, $Y \subset A$ and $Y \subset B$ Therefore, $Y \subset A \cap B,$ Which implies $Y \in P\left( {A \cap B} \right).$ This gives
$P\left( A \right) \cap P\left( B \right) \subset P\left( {A \cap B} \right)$
Hence $P\left( {A \cap B} \right) = P\left( A \right) \cap P\left( B \right)$
જો $A \cap B = B,$ તો . .
જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (B -A)$ મેળવો.
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $A-C$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $A-D$
$A=\{1,2,3,4,5,6,7,8,9,10\}$ અને $B=\{2,3,5,7\}$ માટે $A \cap B$ શોધો અને તે પરથી બતાવો $A \cap B = B$