કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે ? $ P(A) \cup P(B)=P(A \cup B)$ સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.
False
Let $A=\{0,1\}$ and $B =\{1,2\}$
$\therefore A \cup B=\{0,1,2\}$
$P(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$
$P(B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$
$P(A \cup B)=\{\varnothing,\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}$
$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$
$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$
$\therefore P(A) \cup P(B) \neq P(A \cup B)$
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap \left( {B \cup D} \right)$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-B$
જો $n(A) = 3$, $n(B) = 6$ અને $A \subseteq B$. તો $A \cup B$ માં રહેલ ઘટકો મેળવો.
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $B \cap D$
જો $A$ અને $B$ એ ગણ $S$ = $\{1,2,3,4\}$ ના બે ઉપગણો છે કે જેથી $A\ \cup \ B$ = $S$ થાય તો $(A, B)$ ની કેટલી જોડ મળે ?