કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે ? $ P(A) \cup P(B)=P(A \cup B)$ સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

False

Let $A=\{0,1\}$ and $B =\{1,2\}$

$\therefore A \cup B=\{0,1,2\}$

$P(A)=\{\varnothing,\{0\},\{1\},\{0,1\}\}$

$P(B)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$

$P(A \cup B)=\{\varnothing,\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$P(A) \cup P(B)=\{\varnothing,\{1\},\{0,1\},\{2\},\{1,2\}\}$

$\therefore P(A) \cup P(B) \neq P(A \cup B)$

Similar Questions

બે ગણું $X$ અને $Y$ એવા છે કે ગણ $X$ માં $40$ ઘટકો, $X \cup Y$ માં $60$ ઘટકો અને $X$ $\cap\, Y$ માં $10$ ઘટકો હોય, તો $Y$ માં કેટલા ઘટકો હશે?

$X =\{1,3,5\} \quad Y =\{1,2,3\}$ નો યોગગણ લખો

$A$ અને $B$ ગણો છે. કોઈ ગણ $X$ માટે જો $A \cap X=B \cap X=\phi$ અને $A \cup X=B \cup X$ તો સાબિત કરો કે $A = B$

( સૂચનઃ $A = A \cap (A \cup X),B = B \cap (B \cup X)$ અને વિભાજનના નિયમનો ઉપયોગ કરો. )

જો $A, B$ અને  $C$ એ ત્રણ ગણ હોય તો  $A -(B  \cup C)$ મેળવો.

યોગગણ લખો :​ $A=\{1,2,3\}, B=\varnothing$