Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}$

$=\frac{1}{\cos ^{2} A}=\frac{\sin ^{2} A}{\sin ^{2} A}$

$=\tan ^{2} A$

$\left(\frac{1-\tan A }{1-\cot A }\right)^{2}=\frac{1+\tan ^{2} A -2 \tan A }{1+\cot ^{2} A -2 \cot A }$

$=\frac{\sec ^{2} A-2 \tan A}{\operatorname{cosec}^{2} A-2 \cot A}$

$=\frac{\frac{1}{\cos ^{2} A}-\frac{2 \sin A}{\cos A}}{\frac{1}{\sin ^{2} A}-\frac{2 \cos A}{\sin A}}=\frac{\frac{1-2 \sin A \cos A}{\cos ^{2} A}}{\frac{1-2 \sin A \cos A}{\sin ^{2} A}}$

$=\frac{\sin ^{2} A }{\cos ^{2} A }=\tan ^{2} A$

Similar Questions

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

State whether the following are true or false. Justify your answer.

$\sin \theta=\cos \theta$ for all values of $\theta$

If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$