નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}$

$=\frac{1}{\cos ^{2} A}=\frac{\sin ^{2} A}{\sin ^{2} A}$

$=\tan ^{2} A$

$\left(\frac{1-\tan A }{1-\cot A }\right)^{2}=\frac{1+\tan ^{2} A -2 \tan A }{1+\cot ^{2} A -2 \cot A }$

$=\frac{\sec ^{2} A-2 \tan A}{\operatorname{cosec}^{2} A-2 \cot A}$

$=\frac{\frac{1}{\cos ^{2} A}-\frac{2 \sin A}{\cos A}}{\frac{1}{\sin ^{2} A}-\frac{2 \cos A}{\sin A}}=\frac{\frac{1-2 \sin A \cos A}{\cos ^{2} A}}{\frac{1-2 \sin A \cos A}{\sin ^{2} A}}$

$=\frac{\sin ^{2} A }{\cos ^{2} A }=\tan ^{2} A$

Similar Questions

$(\sec A+\tan A)(1-\sin A)=..........$

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

$\angle A$ અને $\angle B$ એવા લઘુકોણો છે કે, જેથી $\cos A =\cos B .$ સાબિત કરો કે $\angle A =\angle B$.

કિંમત શોધો : $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

જેમ-જેમ $\theta$ નું મૂલ્ય વધે, તેમ તેમ $\sin \theta$ નું મૂલ્ય વધે છે.