सिद्ध कीजिए

$\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right), \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$

$L.H.S.$ $=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$

$=\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}$

$=\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 6 x]}$

$=\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]}$

$=\tan 6 x$

$= R . H.S.$

Similar Questions

यदि ${\sin ^2}\theta = \frac{{{x^2} + {y^2} + 1}}{{2x}}$, तो $x$ का मान है   

निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)

$\frac{7 \pi}{6}$

यदि $\tan \theta  - \cot \theta  = a$ व $\sin \theta  + \cos \theta  = b,$ तो ${({b^2} - 1)^2}({a^2} + 4)$ बराबर होगा

यदि $x + \frac{1}{x} = 2\cos \alpha $, तो ${x^n} + \frac{1}{{{x^n}}} = $

मान ज्ञात कीजिए

$\tan 15^{\circ}$