If $\tan \theta = \frac{{ - 4}}{3},$ then $\sin \theta = $
$-4/5$ but not $4/5$
$-4/5 $ or $4/5$
$4/5$ but not $-4/5$
None of these
Prove that $\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x$
If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be
Find the degree measures corresponding to the following radian measures ( Use $\pi=\frac{22}{7}$ ).
$\frac{7 \pi}{6}$
Find the value of $\sin \frac{31 \pi}{3}$.
If $\sin x = \frac{{ - 24}}{{25}},$ then the value of $\tan \, x$ is