જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have
$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$ ......... $(1)$
From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$
Therefore $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$
or $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$
$=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$ (by $(1))$
$=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$
$=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$
Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent
પત્તાના ઢગલામાંથી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરવામાં આવે છે. આ પત્તુ લાલ રંગનું અથવા રાણી હોવાની સંભાવના કેટલી છે ?
જો $P (A) =0.5, P (B)=0.7, P (A \cap B) =0.6$ તો $ P (A \cup B) = …. ($જયાં અને આપેલી ઘટનાઓ છે.$)$
જો $ P(A) = 0.25, P(B)= 0.50 $ અને $P(A \,\cap\,B) = 0.14 $ હોય, તો $P(A\,\, \cap \,\,\overline B )$બરાબર શું થાય ?
$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is
જો $A$ અને $B$ બે ઘટનાઓ છે કે જેમાં $P\,(A) = 0.3$ અને $P\,(A \cup B) = 0.8$. જો $A$ અને $B$ એ નિરપેક્ષ ઘટનાઓ હોય,તો $P(B) = $