Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.
Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that
$P(E)=0.05$, $P(F)=0.10$ and $P(E \cap F)=0.02$
Then
The event only one of them will qualify the examination is same as the event either (Anil will qualify, andAshima will not qualify) or (Anil will not qualify and Ashima will qualify) i.e., $E \cap F ^{\prime}$ or $E ^{\prime} \cap F ,$ where $E \cap F ^{\prime}$ and $E ^{\prime} \cap F$ are mutually exclusive.
Therefore, $P$ (only one of them will qualify) $=P(E \cap F^{\prime} $ or $E^{\prime} \cap F)$
$= P \left( E \cap F ^{\prime}\right)$ $+ P \left( E ^{\prime} \cap F \right)$ $= P ( E )- P ( E \cap F )+ P ( F )- P ( E \cap F ) $
$=0.05-0.02+0.10-0.02=0.11$
India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point $0, 1$ and $2$ are $0.45, 0.05$ and $0.50$ respectively. Assuming that the outcomes are independents, the probability of India getting at least $7$ points is
If the probability of $X$ to fail in the examination is $0.3$ and that for $Y$ is $0.2$, then the probability that either $X$ or $Y$ fail in the examination is
An event has odds in favour $4 : 5$, then the probability that event occurs, is
If $A$ and $B$ are two independent events, then $A$ and $\bar B$ are
If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is