સાબિત કરો કે, $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}}$

$ = \frac{{1 + \cos 2x}}{2} + \frac{{1 + \cos \left( {2x + \frac{{2\pi }}{3}} \right)}}{2} + \frac{{1 + \cos \left( {2x - \frac{{2\pi }}{3}} \right)}}{2}$

$ = \frac{1}{2}\left[ {3 + \cos 2x + \cos \left( {2x + \frac{{2\pi }}{3}} \right) + \cos \left( {2x - \frac{{2\pi }}{3}} \right)} \right]$

$ = \frac{1}{2}\left[ {3 + \cos 2x + 2\cos 2x\cos \frac{{2\pi }}{3}} \right]$

$=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right]$

$=\frac{1}{2}\left[3+\cos 2 x-2 \cos 2 x \cos \frac{\pi}{3}\right]$

$=\frac{1}{2}[3+\cos 2 x-\cos 2 x]=\frac{3}{2}= R.H.S.$

Similar Questions

જો  $\tan A + \cot A = 4,$ તો  ${\tan ^4}A + {\cot ^4}A$ = 

સાબિત કરો કે : $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$

જો  $\sec \theta + \tan \theta = p,$ તો  $\tan \theta $ = 

સાબિત કરો કે : $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$

$\sin \frac{31 \pi}{3}$ નું મૂલ્ય શોધો.