સાબિત કરો કે, $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}}$

$ = \frac{{1 + \cos 2x}}{2} + \frac{{1 + \cos \left( {2x + \frac{{2\pi }}{3}} \right)}}{2} + \frac{{1 + \cos \left( {2x - \frac{{2\pi }}{3}} \right)}}{2}$

$ = \frac{1}{2}\left[ {3 + \cos 2x + \cos \left( {2x + \frac{{2\pi }}{3}} \right) + \cos \left( {2x - \frac{{2\pi }}{3}} \right)} \right]$

$ = \frac{1}{2}\left[ {3 + \cos 2x + 2\cos 2x\cos \frac{{2\pi }}{3}} \right]$

$=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right]$

$=\frac{1}{2}\left[3+\cos 2 x-2 \cos 2 x \cos \frac{\pi}{3}\right]$

$=\frac{1}{2}[3+\cos 2 x-\cos 2 x]=\frac{3}{2}= R.H.S.$

Similar Questions

જો $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ અને $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ તો ${(m + n)^{2/3}} + {(m - n)^{2/3}}  = . . .$

$\sin \frac{x}{2}, \cos \frac{x}{2}$ અને $\tan \frac{x}{2}$ ની કિંમતો શોધો.: $\cos x=-\frac{1}{3}, x$ એ બીજા ચરણમાં છે.

જો $\tan \theta - \cot \theta = a$ અને $\sin \theta + \cos \theta = b,$ તો ${({b^2} - 1)^2}({a^2} + 4)$ મેળવો. 

$\sin \frac{31 \pi}{3}$ નું મૂલ્ય શોધો. 

રેડિયન માપ શોધો : $25^{\circ}$