Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}\right)+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}}$

$ = \frac{{1 + \cos 2x}}{2} + \frac{{1 + \cos \left( {2x + \frac{{2\pi }}{3}} \right)}}{2} + \frac{{1 + \cos \left( {2x - \frac{{2\pi }}{3}} \right)}}{2}$

$ = \frac{1}{2}\left[ {3 + \cos 2x + \cos \left( {2x + \frac{{2\pi }}{3}} \right) + \cos \left( {2x - \frac{{2\pi }}{3}} \right)} \right]$

$ = \frac{1}{2}\left[ {3 + \cos 2x + 2\cos 2x\cos \frac{{2\pi }}{3}} \right]$

$=\frac{1}{2}\left[3+\cos 2 x+2 \cos 2 x \cos \left(\pi-\frac{\pi}{3}\right)\right]$

$=\frac{1}{2}\left[3+\cos 2 x-2 \cos 2 x \cos \frac{\pi}{3}\right]$

$=\frac{1}{2}[3+\cos 2 x-\cos 2 x]=\frac{3}{2}= R.H.S.$

Similar Questions

${\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = $

The circular wire of diameter $10\,cm$ is cut and placed along the circumference of a circle of diameter $1\, metre.$ The angle subtended by the wire at the centre of the circle is equal to

A circular wire of radius $7\,cm$ is cut and bend again into an arc of a circle of radius $12\,cm$. The angle subtended by the arc at the centre is ......$^o$

If the arcs of the same length in two circles $S_1$ and $S_2$ subtend angles $75^o $ and $120^o $ respectively at the centre. The ratio $\frac{{{S_1}}}{{{S_2}}}$ is equal to

The value of $\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$ is