$500$ कार मालिकों से पूछताछ करनें पर पाया गया कि $400$ लोग $A$ प्रकार की कार के, $200$ लोग $B$ प्रकार की कार के तथा $500$ लोग $A$ और $B$ दोनों प्रकार की कारों के मालिक थे। क्या ये आँकडे सही हैं ?
Let $U$ be the set of car owners investigated, $M$ be the set of persons who owned car $A$ and $S$ be the set of persons who owned car $B.$
Given that $\quad n( U )=500, n( M )=400, n( S )=200$ and $n( S \cap M )=50$
Then $\quad n( S \cup M )=n( S )+n( M )-n( S \cap M )=200+400-50=550$
But $S \cup M \subset U$ implies $n( S \cup M ) \leq n( U )$
This is a contradiction. So, the given data is incorrect.
एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?
एक निश्चित स्कूल में, $74 %$ छात्र क्रिकेट पसंद करते हैं, $76 %$ छात्र फुटबॉल पसंद करते हैं और $82 %$ टेनिस पसंद करते हैं। तब, कम से कम $......%$ छात्रों को तीनों खेलों की पसंद है।
किसी विद्यालय के $800 $ लड़कों में से, $224 $ क्रिकेट, $240 $ हॉकी तथा $336 $ बास्केटबॉल खेलते हैं। कुल $64$ बास्केटबॉल और हॉकी, $80 $ क्रिकेट और बास्केटबॉल तथा $40$ क्रिकेट और हॉकी खेलते हैं, तथा $24 $ तीनों खेल खेलते हैं तब कोई भी खेल न खेलने वाले लड़कों की संख्या है
एक स्कूल की तीन एथलेटिक टीमों में $21$ छात्र क्रिकेट टीम में हैं, $26$ हॉकी टीम में हैं और $29$ फुटबॉल टीम में हैं। उनमें से $14$ हॉकी और क्रिकेट खेलते हैं, $15$ हॉकी और फुटबॉल खेलते हैं, और $12$ फुटबॉल और क्रिकेट खेलते हैं। आठ छात्र तीनों खेल खेलते हैं। तो इन तीनों एथलेटिक टीमों में कुल कितने अलग-अलग सदस्य हैं?
एक विद्यालय की तीन एथलेटिक्स टीम के सदस्यों में से $ 21$ क्रिकेट टीम में, $26 $ हॉकी टीम में तथा $ 29$ फुटबाल टीम में हैं साथ ही इनमें से $14 $ हॉकी और क्रिकेट, $15$ हॉकी और फुटबाल तथा $12$ फुटबाल और क्रिकेट दोनों खेलते हैं। $8$ तीनों खेल खेलते हैं, तब तीनों एथलेटिक्स टीम के सदस्यों की कुल संख्या क्या होगी