The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
$2n\pi$
$n\pi$
$n\pi /3$
$2 n\pi /3$ where $n \in I$
If $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, then $\theta = $
If $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to
If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta $ is
If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then $mn$ is equal to $.............$.
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are