समीकरण $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ का एक मूल है
$ - (a + b)$
$ - (b + c)$
$ - a$
$ - (a + b + c)$
$\theta \in(0, \pi)$ के मानों की संख्या, जिसके लिये रेखीय समीकरण निकाय $x+3 y+7 z=0$, $-x +4 y +7 z =0$, $(\sin 3 \theta) x +(\cos 2 \theta) y +2 z =0$ के अनिरर्थक हल हो, होगी
यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है
समीकरण $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ के मूल हैं
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ का अधिकतम मान है
समीकरण $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ के मूल हैं