સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ નું કોઈ એક બીજ મેળવો.

  • A

    $ - (a + b)$

  • B

    $ - (b + c)$

  • C

    $ - a$

  • D

    $ - (a + b + c)$

Similar Questions

જો રેખીય સમીકરણો $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$ અનંત ઉકેલ ધરાવે છે તો  $\lambda  + \mu $ ની કિમંત મેળવો.

  • [JEE MAIN 2019]

જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.

  • [JEE MAIN 2014]

જો સુરેખ સમીકરણોની સંહતિ  $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ;કે જ્યાં $a, b, c \in R$ એ ભિન્ન શૂન્યતર સંખ્યાઓ હોય તો . . . . 

  • [JEE MAIN 2020]

જો $ A, B, C$  એ ત્રિકોણના ખૂણા હોય , તો $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $

જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]