समीकरण $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ के मूल हैं
$0, -3$
$0, 0, -3$
$0, 0, 0, -3$
इनमें से कोई नहीं
माना $\alpha$ के सभी वास्तविक मानों, जिनके लिए रेखाएँ $2 x-y+3=0,6 x+3 y+1=0$ तथा $\alpha x+2 y-2=0$ एक त्रिभुज नहीं बनाती है, के वर्गों का योग $\mathrm{p}$ है, तो महत्तम पूर्णांक $\leq \mathrm{p}$ है .......।
दो न्याय पासे फेंके जाते है। उनमें प्राप्त अंको को $\lambda$ तथा $\mu$ लेकर रैखिक समीकरण निकाय $x+y+z=5$ , $x+2 y+3 z=\mu$ , $x+3 y+\lambda z=1$ बनाया जाता है। यदि इस निकाय का अद्वितीय हल होने की प्रायिकता $p$ है तथा इस निकाय का कोई भी हल न होने की प्रायिकता $q$ है, तो -
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
यदि $A \ne O$ और $B \ne O$, $n × n $ कोटि के आव्यूह इस प्रकार हैं कि $AB = O,$ तो
माना $\alpha, \beta, \gamma$ समीकरण $x ^{3}+ ax ^{2}+ bx + c =0$, $(a, b, c \in R$ तथा $a, b \neq 0)$ के वास्तविक मूल हैं। यदि $u , v , w$ में समीकरण निकाय $\alpha u +\beta v +\gamma w =0$, $\beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ का अतुच्छ हल है, तो $\frac{a^{2}}{b}$ का मान है