ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?

$E$ : 'निकाला गया पत्ता काले रंग का है'

$F :$ 'निकाला गया पत्ता एक बादशाह है'

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $26$ cards are black and $4$ cards are kings.

$\therefore $ $\mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a black ) $=\frac{26}{52}=\frac{1}{2}$

$\therefore $ $\mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a king ) $=\frac{4}{52}=\frac{1}{13}$

In the pack of $52$ cards, $2$ cards are black as well as kings.

$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is  black king ) $=\frac{2}{52}=\frac{1}{26}$

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=\mathrm{P}(\mathrm{EF})$

Therefore, the given events $\mathrm{E}$ and $\mathrm{F}$ are independent.

Similar Questions

तीन धावक $A, B, C$ एक दौड़ प्रतियोगिता में भाग लेते हैं। $A$ और $B$ के जीतने की प्रायिकता $C$ के जीतने की प्रायिकता से दुगुनी है। दौड़ $A$ या $B$ द्वारा जीते जीने की प्रायिकता है

माना दो अनभिनत छ: फलकीय पासे $A$ तथा $B$ एक साथ उछाले गये। माना घटना $E_{1}$ पासे $A$ पर चार आना दर्शाती हैं, घटना $E_{2}$ पासे $B$ पर $2$ आना दर्शाती है तथा घटना $E_{3}$ दोनों पासों पर आने वाली संख्याओं का योग विषम दर्शाती है, तो निम्न में से कौन-सा कथन सत्य नहीं है?

  • [JEE MAIN 2016]

एक अनभिनत (unbiased) सिक्के को उछाला जाता है। चित्त आने पर अनभिनत पासों के एक युग्म को उछाला जाता है तथा उन पर आई संख्याओं का योग नोट किया जाता है। यदि सिक्के पर पट् आता है, तो $9$ कार्डो जिन पर संख्याएं $1,2,3, \ldots, 9$ अंकित हैं, की एक अच्छी प्रकार से फेंटी गई गड्डी में से एक कार्ड निकाल कर उस पर आई संख्या नोट की जाती है। इस प्रकार नोट की गई संख्या $7$ अथवा $8$ होने की प्रायिकता है

  • [JEE MAIN 2019]

एक छात्र की गणित, भौतिकी, रसायन शास्त्र में उत्तीर्ण होने की प्रायिकतायें क्रमश: $m, p$ तथा $c$ हैं। इन विषयों में से इस छात्र के कम से कम एक विषय में पास होने की सम्भावना $75\%$ है, कम से कम दो विषयों में पास होने की $50\%$ और केवल दो ही विषयों में पास होने की सम्भावना $40\%$ हैं। निम्नलिखित में से कौन-कौन से सम्बन्ध सत्य हैं

  • [IIT 1999]

घटनाओं $A$ व $B$ में से कम से कम एक के घटने की प्रायिकता $0.6$ है। यदि $A$ व $B$ एक साथ घटित होती हैं जिसकी प्रायिकता $0.3$ हैं, तो $P(A') + P(B')$ का मान है