સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પતું કાળા રંગનું છે'. $F :$ ‘પસંદ કરેલ પતું રાજા છે”.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $26$ cards are black and $4$ cards are kings.

$\therefore $ $\mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a black ) $=\frac{26}{52}=\frac{1}{2}$

$\therefore $ $\mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a king ) $=\frac{4}{52}=\frac{1}{13}$

In the pack of $52$ cards, $2$ cards are black as well as kings.

$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is  black king ) $=\frac{2}{52}=\frac{1}{26}$

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{2} \cdot \frac{1}{13}=\frac{1}{26}=\mathrm{P}(\mathrm{EF})$

Therefore, the given events $\mathrm{E}$ and $\mathrm{F}$ are independent.

Similar Questions

બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $

  • [IIT 1988]

એક શાળાના ધોરણ $XI$ નાં $40 \%$ વિદ્યાર્થી ગણિત ભણે છે અને $30 \%$ જીવવિજ્ઞાન ભણે છે. વર્ગના $10 \%$ વિદ્યાર્થી ગણિત અને જીવવિજ્ઞાન બંને ભણે છે. આ ધોરણનો એક વિદ્યાર્થી યાદચ્છિક રીતે પસંદ કરવામાં આવે છે, તો આ વિદ્યાર્થી ગણિત અથવા જીવવિજ્ઞાન ભણતો હોય તેની સંભાવના શોધો.

એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NSS$ ને પસંદ કર્યું છે. પરંતુ $NCC$ ને પસંદ કર્યું નથી.

$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is

  • [JEE MAIN 2013]

જો $A, B, C$ એ કોઈ યાદચ્છિક પ્રયોગ સાથે સંકળાયેલ ત્રણ ઘટનાઓ હોય, તો સાબિત કરો કે $P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$