ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E :$ 'निकाला गया पत्ता हुकुम का है
$F :$ 'निकाला गया पत्ता इक्का है'
In a deck of $52$ cards, $13$ cards are spades and $4$ cards are aces.
$\therefore $ $ \mathrm{P}(\mathrm{E})=\mathrm{P}$ (the card drawn is a spade) $=\frac{13}{52}=\frac{1}{4}$
$\therefore $ $ \mathrm{P}(\mathrm{F})=\mathrm{P}$ (the card drawn is a ace) $=\frac{4}{52}=\frac{1}{13}$
In the deck of cards, only $1$ card is an ace of spades.
$ \mathrm{P}(\mathrm{EF})=\mathrm{P}$ (the card drawn is spade and an ace) $=\frac {1}{52}$
$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{1}{4} \frac{1}{13}=\frac{1}{52}=\mathrm{P}(\mathrm{EF})$
$\Rightarrow \mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{EF})$
Therefore, the events $\mathrm{E}$ and $\mathrm{F}$ are independent.
पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है
$52$ ताशों की एक गड्डी से एक ताश निकाला जाता है। एक जुआरी शर्त लगाता है कि यह हुकुम का पत्ता है या इक्का उसके इस शर्त को जीतने के प्रतिकूल संयोगानुपात है
माना कि $E$ व $F$ दो स्वतंत्र घटनायें हैं $E$ व $F$ दोनों के घटने की प्रायिकता $\frac{1}{{12}}$ है तथा "न तो $E$ और न $F$" से घटने की प्रायिकता $\frac{1}{2}$ है, तो
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ स्वतंत्र हैं।