$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ ) का मान ज्ञात कीजिए।
It is given that $P(A)=0.3,\,P(B)=0.6$..
Also, $A$ and $B$ are independent events.
$\mathrm{P}(\mathrm{A}$ and $\mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\Rightarrow $ $ \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3 \times 0.6=0.18$
एक घुड़-दौड़ में तीन घोड़ों के अनुकूल संयोगानुपात $1:2 , 1:3$ व $1:4$ हैं, तो किसी एक घोड़े के द्वारा दौड़ जीते जाने की प्रायिकता है
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है
तीन बक्सों, जिनमें से एक में $3$ सफेद और $1$ काली, दूसरे में $2$ सफेद और $2$ काली ओर तीसरे में $1$ सफेद और $3$ काली गेंदें रखी हैं, प्रत्येक से एक गेंद यादृच्छिक तरीके से निकाली जाती है। $2$ सफेद और $1$ काली गेंदों को निकाले जाने की प्रायिकता होगी
यदि $A$ तथा $B$ दो स्वतंत्र घटनाएँ हो, जहाँ $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ तो $P$ (न $A$ और न $B$) ज्ञात कीजिए