तीन समुच्चयों (sets) $E _1=\{1,2,3\}, F _1=\{1,3,4\}$ और $G _1=\{2,3,4,5\}$ पर विचार कीजिए। समुच्चय $E _1$ से दो अवयवों (elements) को बिना प्रतिस्थापित किए (without replacement) यादृच्छया (randomly) चुना जाता है, और मान लीजिए कि $S _1$ इन चुने हए अवयवों के समुच्चय को निरूपित करता है। मान लोजिए कि $E _2= E _1- S _1$ तथा $F _2= F _1 \cup S _1$ हैं। अब समुच्चय $F _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _2$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $G _2= G _1 \cup S _2$ है। अंततः समुच्चय $G _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _3$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $E _3= E _2 \cup S _3$ है। घटना $E _1= E _3$ के ज्ञात होने पर, मान लीजिए कि $p$, घटना $S _1=\{1,2\}$ की सप्रतिबंध प्रायिकता (conditional probability) को निरूपित करता है। तब $p$ का मान है

  • [IIT 2021]
  • A

    $\frac{1}{5}$

  • B

    $\frac{3}{5}$

  • C

    $\frac{1}{2}$

  • D

    $\frac{2}{5}$

Similar Questions

दो दी हूई घटनाओं $A$ व $B$ के लिए $P\,(A \cap B)$ का मान है

  • [IIT 1988]

$P ( A )=\frac{3}{5}$ और $P ( B )=\frac{1}{5},$ दिया गया है। यदि $A$ और $B$ परस्पर अपवर्जी घटनाएँ हैं, तो $P ( A$ या $B$ ), ज्ञात कीजिए।

मान लें $A$ और $B$ स्वतंत्र घटनाएँ हैं तथा $P ( A )=0.3$ और $P ( B )=0.4 .$ तब $P ( A \cap B )$ ज्ञात कीजिए।

एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है

क्रम. नाम लिंग आयु ( वर्षो में )
$1.$ हरीश $M$ $30$
$2.$ रोहन $M$ $33$
$3.$ शीतल $F$ $46$
$4.$ ऐलिस $F$ $28$
$5.$ सलीम $M$ $41$

इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?

तीन परस्पर अपवर्जी घटनाओं की प्रायिकताएँ $\frac{2}{3} ,  \frac{1}{4}$ तथा $\frac{1}{6}$ हैं यह कथन है