One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is

  • A

    $\frac{8}{{17}}$

  • B

    $\frac{{40}}{{153}}$

  • C

    $\frac{5}{9}$

  • D

    $\frac{4}{9}$

Similar Questions

If $A$ and $B$ an two events such that $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ and $P\,(\bar B) = \frac{1}{3},$ then $P\,(A) = $

The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are

Let $S$ be a set containing n elements and we select $2$ subsets $A$ and $B$ of $S$ at random then the probability that $A \cup B = S$ and $A \cap B = \phi $ is

Given two mutually exclusive events $A$ and $B$ such that $P(A) = 0.45$ and $P(B) = 0.35,$ then $P (A$ or $B ) =$

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$