छुटियों में वीना ने चार शहरों $A , B , C$ और $D$ की यादृच्छया क्रम में यात्रा की। क्या प्रायिकता है कि उसने
$A$ की यात्रा $B$ से पहले और $B$ की $C$ से पहले की ?
The number of arrangements (orders) in which Veena can visit four cities $A,\,B,\,C$ or $D$ is $4 !$ i.e., $24 .$ Therefore, $n(S)=24$
since the number of elements in the sample space of the experiment is $24$ all of these outcomes are considered to be equally likely. A sample space for the experiment is
$S =\{ ABCD , \,ABDC , \,ACBD $, $ACDB , \,ADBC , \,ADCB$, $BACD,\, BADC,\, BDAC$, $BDCA, \,BCAD, ,BCDA,$ $CABD, \,CADB, \,CBDA$, $CBAD, \,CDAB, \,CDBA,$ $DABC,\, DACB,\, DBCA$, $DBAC, \,DCAB, \,DCBA\}$
Let the event 'Veena visits A before $B$ and $B$ before $C ^{*}$ be denoted by $F$.
Here $F =\{ ABCD , \,DABC , \,ABDC , \,ADBC \}$
Therefore, $P(F)=\frac{n(F)}{n(S)}=\frac{4}{24}=\frac{1}{6}$
एक रिले दौड़ (relay race) में पाँच टीमों $A , B , C , D$ और $E$ ने भाग लिया।
$A , B$ और $C$ के क्रमश: पहला, दूसरा व तीसरा स्थान पाने की क्या प्रायिकता है?
शब्द $'ASSASSINATION'$ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर एक स्वर (vowel) है
एक डिब्बे में $1$ लाल और एक जैसी $3$ सफ़ेद गेंद रखी गई हैं। दो गेंद उत्तरोतर (in succession) बिना प्रतिस्थापित किए यादृच्चया निकाली जाती है। इस परीक्षण का प्रतिदर्श समष्टि ज्ञात कीजिए।
निम्नलिखित में सत्य या असत्य बताइए ( अपने उत्तर का कारण दीजिए )
$A :$ पहले पासे पर सम संख्या प्राप्त होना
$B$ : पहले पासे पर विषम संख्या प्राप्त होना
$C :$ पासों पर प्राप्त संख्याओं का योग $\leq 5$ होना
$A ^{\prime}, B ^{\prime}, C$ परस्पर अपवर्जी और निःशेष घटनाएँ हैं।
दो व्यक्ति एक पाँसे को फेंकते हैं, तो उनके बराबर अंक प्राप्त करने की प्रायिकता ${p_1}$ है। यदि चार व्यक्ति एक पाँसे को फेंकते हैं, उनमें तीन व्यक्तियों के बराबर अंक प्राप्त करने की प्रायिकता ${p_2}$ है, तो