Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3  + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is

  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $8$

Similar Questions

If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta  = $

If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $k \pi$, then $k$ is equal to.

  • [JEE MAIN 2022]

$\cot \theta = \sin 2\theta (\theta \ne n\pi $, $n$ is integer), if $\theta = $

The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is

  • [JEE MAIN 2025]

The variable $x$ satisfying the equation $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x}  = \sqrt 3$ belongs to the interval