If$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < {180^o}$, then $\theta =$
${30^o},{45^o}$
${45^o},{90^o}$
${135^o},{150^o}$
${30^o},{45^o},{90^o},{135^o},{150^o}$
Find the general solution of the equation $\sin 2 x+\cos x=0$
The solution set of the equation $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ is
The value of the expression
$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2 sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than
Number of solutions of $\sqrt {\tan \theta } = 2\sin \theta ,\theta \in \left[ {0,2\pi } \right]$ is equal to
The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is