પ્રગામી તરંગનું સ્થાનાંતર $y = A\,sin \,(\omega t - kx)$ વડે દર્શાવવામાં આવે છે. જ્યાં $x$ એ અંતર અને $t$ એ સમય છે તો $(i)$ $\omega $ અને $(ii)$ $k$ ના પારિમાણિક સૂત્રો લખો.
${S_t} = u + \frac{1}{2}a(2t - 1)$ સમીકરણમાં બધી સંજ્ઞા પોતાની મૂળભૂત રાશિ દર્શાવે છે. આપેલ સમીકરણ .....
$\frac{\mathrm{B}^{2}}{2 \mu_{0}}$ નું પારિમાણ શું થાય?
જ્યાં $\mathrm{B}$ એ ચુંબકીયક્ષેત્ર અને $\mu_{0}$ એ શૂન્યાવકાશની ચુંબકીય પરમીએબીલીટી છે.