If force $({F})$, length $({L})$ and time $({T})$ are taken as the fundamental quantities. Then what will be the dimension of density
A famous relation in physics relates 'moving mass' $m$ to the 'rest mass' $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c .$ (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant $c$. He writes:
$m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$
Guess where to put the missing $c$
Planck's constant $(h),$ speed of light in vacuum $(c)$ and Newton's gravitational constant $(G)$ are three fundamental constants. Which of the following combinations of these has the dimension of length $?$
Given that $\int {{e^{ax}}\left. {dx} \right|} = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x = L^1$) ?
What is Dimensional Analysis ? State uses of Dimensional Analysis.