Number of particles is given by $n = - D\frac{{{n_2} - {n_1}}}{{{x_2} - {x_1}}}$ crossing a unit area perpendicular to $X-$axis in unit time, where ${n_1}$ and ${n_2}$ are number of particles per unit volume for the value of $x$ meant to ${x_2}$ and ${x_1}$. Find dimensions of $D$ called as diffusion constant

  • A
    ${M^0}L{T^2}$
  • B
    ${M^0}{L^2}{T^{ - 4}}$
  • C
    ${M^0}L{T^{ - 3}}$
  • D
    ${M^0}{L^2}{T^{ - 1}}$

Similar Questions

If force $({F})$, length $({L})$ and time $({T})$ are taken as the fundamental quantities. Then what will be the dimension of density

  • [JEE MAIN 2021]

A famous relation in physics relates 'moving mass' $m$ to the 'rest mass' $m_{0}$ of a particle in terms of its speed $v$ and the speed of light, $c .$ (This relation first arose as a consequence of special relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where to put the constant $c$. He writes:

$m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$

Guess where to put the missing $c$

Planck's constant $(h),$ speed of light in vacuum $(c)$ and Newton's gravitational constant $(G)$ are three fundamental constants. Which of the following combinations of these has the dimension of length $?$

  • [NEET 2016]

Given that $\int {{e^{ax}}\left. {dx} \right|}  = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x =  L^1$) ?

What is Dimensional Analysis ? State uses of Dimensional Analysis.